Машинное обучение - один из самых быстро развивающихся разделов информатики, с приложениями в самых разных областях. Цель этой книги - познакомить читателя с фундаментальными прин-ципами машинного обучения и характерными для него алгоритмиче-скими парадигмами. Книга содержит обширный свод основополагающих теоретиче-ских идей машинного обучения и математические выкладки, благодаря которым эти идеи становятся практическими алгоритмами. Вслед за изложением базовых основ дисциплины рассматривается широкий спектр тем, не нашедших достаточного отражения в предшествующих учебниках: вычислительная сложность обучения, понятия выпуклости и устойчивости, важные алгоритмы, включая стохастический гради-ентный спуск, нейронные сети и обучение структурированному выво-ду, а также совсем недавние теоретические концепции, например, PAC-байесовский подход и границы сжатия. Книга задумывалась как повышенный курс для студентов сред-них и старших курсов, фундаментальные основы и алгоритмы машин-ного обучения излагаются в форме, доступной студентам и читателям, не являющимся специалистами в области математической статистики, информатики, математики и технических дисциплин