Численные алгоритмы без насыщения в классических задачах математической физики

Характеристики
ISBN 978-5-904640-13-2
Автор Алгазин С.Д.
Издательство АИСнТ
Переплет ОБЛ
Формат 84x108/32
Вес, гр 475
Год 2016
Стр. 390
Сроки выполнения Поставка по предоплате
ID 40УР
В книге рассматривается новый подход к конструированию алгоритмов математической физики. В основном рассматриваются спектральные задачи для обыкновенных дифференциальных уравнений, уравнения Лапласа (три краевых задачи) и бигармонического уравнения (две краевые задачи).Классический подход, основанный на применении методов конечных разностей и конечных элементов, обладает существенными недостатками - он не реагирует на гладкость отыскиваемого решения. Для разностной схемы р-го порядка в независимости от гладкости отыскиваемого решения погрешность метода - 0(hp). Гладкость решения определяется входными данными задачи. Рассматриваемые в книге алгоритмы свободны от этих недостатков. Предлагаемые алгоритмы автоматически настраиваются на гладкость отыскиваемого решения и их точность тем выше, чем большим условиям гладкости отвечает отыскиваемое решение. Для рассматриваемых задач на собственные значения для обыкновенных дифференциальных уравнений экспериментально показано, что убывание погрешности - экспоненциально. Этого невозможно добиться методами конечных разностей и конечных элементов.Для двумерных задач громоздкие вычисления затабулированы в таблицах небольшого объёма, что позволяет разработать компактные алгоритмы решения поставленных задач. Монография представляет интерес для студентов и аспирантов физико- технических и математических специальностей, специалистов по численным методам, а также для научных сотрудников и инженеров, интересующихся новыми методами численного решения задач математической физики.