Метод многогранника Ньютона в теории дифференциальных уравнений в частных производных
ISBN | 5-8360-0329-7 |
Автор | Волевич Л.Р., Гиндикин С.Г. |
Издательство | Эдиториал УРСС |
Переплет | ПЕР |
Формат | 60x90/16 |
Вес, гр | 465 |
Год | 2002 |
Стр. | 312 |
Сроки выполнения | Поставка по предоплате |
ID | 40УР |
Монография посвящена разработке алгебраической, геометрической и аналитической техники в дифференциальных уравнениях с частными производными, связанной с многогранником Ньютона символа оператора. Более элементарная первая часть книги, посвященная многоугольнику Ньютона (гл.I--IV), содержит, тем не менее, законченные результаты и ориентирована на широкий круг читателей. Вторая часть (гл.IV--VII), посвященная многограннику Ньютона, содержит более сложные конструкции.В центре внимания в книге три задачи о дифференциальных уравнениях: специальный класс гипоэллиптических операторов, определяемый по многограннику Ньютона, обобщенные операторы главного типа, которые определяются с помощью старшей части, ассоциированной с многогранником Ньютона, и энергетические оценки в задаче Коши, в которых также существенную роль играет многогранник Ньютона.Для специалистов по дифференциальным уравнениям в частных производных. Книга доступна математикам --- аспирантам и студентам старших курсов.