Настоящая книга посвящена геометрическим и экстремальным задачам теории приближений, хотя в ней затронуты и основные темы классической теории аппроксимации. Изучаются приближения индивидуальных элементов элементами фиксированного множества, двойственные методы, полиномы, наименее уклоняющиеся от нуля, неравенства для производных полиномов и гладких функций. Излагаются классические методы аппроксимации классов функций: методы Фурье, Фейера, методы аппроксимации положительными полиномиальными операторами и произвольными линейными полиномиальными операторами. Наибольшее внимание в книге уделено сравнительно новой и интенсивно разрабатываемой теме в теории приближений — нахождению поперечников функциональных классов, то есть наилучших методов приближения, интерполирования и задания функций из функциональных классов. Во многих важных случаях дается точное решение задачи о нахождении поперечников классов гладких, аналитических и гармонических функций. Проводится сравнение наилучших и классических методов приближения.Книга адресована широкому кругу математиков, в том числе научным работникам, преподавателям, аспирантам и студентам физико-математических вузов.