Уравнения движения механической системы в обобщенных координатах рассматриваются как одно векторное равенство, записанное в касательном пространстве к многообразию всех ее возможных положений в данный момент времени. Уравнениями связей, как голономных, так и неголономных, это пространство разбивается на два ортогональных подпространства. В одном из них при связях до второго порядка включительно закон движения задается уравнениями связей, а в другом при идеальных связях описывается уравнением, не содержащим реакций связей. Закон движения во всем пространстве содержит множители Лагранжа. Их использование позволило построить новый метод определения собственных частот и собственных форм колебаний упругих систем. Неголономные связи, порядок которых больше двух, рассматриваются как программные связи, выполнение которых обеспечивается за счет наличия обобщенных управляющих сил, отыскиваемых как функции времени. Составлена замкнутая система дифференциальных уравнений, позволяющая определить...