Общий курс математики: Для начинающих пользователей математики. (НЕФОРМАЛЬНЫЙ ПОДХОД)
ISBN | 978-5-9710-8856-1 |
Автор | Алексеев Д.В. |
Издательство | ЛЕНАНД |
Переплет | ОБЛ |
Формат | 60x90/16 |
Серия | , Книга для школьников... И НЕ ТОЛЬКО! |
Вес, гр | 305 |
Год | 2021 |
Стр. | 304 |
Сроки выполнения | Уточняем в течение 24 часов после оформления заказа |
ID | 40УР |
В книге неформально излагаются сведения по разделам математики, необходимым достаточно широкому кругу ее пользователей: анализу функций одной и нескольких переменных; линейной алгебре и аналитической геометрии; обыкновенным дифференциальным уравнениям; функциям комплексной переменной; теории вероятностей и математической статистике.В первой главе рассматриваются понятия бесконечно малых и бесконечно больших функций, производной, первообразной, определенного интеграла, степенного ряда. Вторая глава — аналог «таблицы умножения», снабжающая пользователя начальным запасом конкретных функций, о которых он должен знать если не всё, то достаточно много, чтобы свободно обращаться с формулами, содержащими эти функции. Первые разделы третьей главы посвящены «элементарной» технике дифференцирования и интегрирования, которой должен владеть каждый пользователь математики, далее рассматриваются несобственные интегралы и техника вычисления определенных и несобственных интегралов. Четвертая глава посвящена линейным пространствам, их преобразованиям, а также необходимому для дальнейшего «геометрическому минимуму». Пятая глава содержит основные сведения, связанные с функциями нескольких переменных: дифференцирование; экстремумы (включая условные); двойные, тройные, криволинейные и поверхностные интегралы; дифференцирование и интегрирование векторных полей. В шестой главе излагаются начальные сведения об обыкновенных дифференциальных уравнениях, с акцентом на геометрическую трактовку, рассматриваются уравнения, интегрируемых в квадратурах, и техника их интегрирования заменами переменных, а также линейные уравнения с постоянными коэффициентами. Перевод пользователя в комплексную плоскость в седьмой главе в существенно расширяет его возможности, как в технике вычисления интегралов и решения дифференциальных уравнений, так и в способности схватывать новые структуры (поэтому в ней также рассматриваются преобразования Фурье и начальные сведения об обобщенных функциях). В восьмой главе на конкретных всё усложняющихся примерах излагаются начальные понятия теории вероятностей и математической статистики.Книга адресована широкому кругу пользователей математики, начиная от школьников старших классов, и заканчивая теми, кто давно получил «формальное» образование.