Рассматриваются алгебраические структуры, связанные с классическими интегрируемыми дифференциальными уравнениями. Уравнение Лакса изучается с точки зрения разложения алгебр петель в сумму двух подалгебр. Пары согласованных линейных скобок Пуассона трактуются как согласованные скобки Ли. Многополевые интегрируемые эволюционные системы связываются с алгебраическими неассоциативными структурами. Симметрийный подход к классификации интегрируемых уравнений обобщается на случай уравнений с матричными и векторными неизвестными. Рассматриваются алгебраические структуры, связанные с нелинейными гиперболическими системами лиувиллевского типа. Книга содержит много тщательно отобранных примеров и нерешенных научных задач разной степени трудности.